
University �Politehnica� of Bucharest

Automatic Control and Computers Faculty,

Computer Science Department

BACHELOR THESIS

STP/RSTP implementation in LiSA

Scienti�c Adviser: Author:

As. Drd. George Milescu Andrei Faur

Bucharest, 2009

Algorhyme[1]
I think that I shall never see

A graph more lovely than a tree.
A tree whose crucial property

Is loop-free connectivity.
A tree which must be sure to span.
So packets can reach every LAN.
First the Root must be selected

By ID it is elected.
Least cost paths from Root are traced
In the tree these paths are placed.
A mesh is made by folks like me
Then bridges �nd a spanning tree.

Contents

Algorhyme i

1 Introduction 1

2 Spanning Tree Algorithms 5

2.1 Spanning Tree Protocol . 5
2.1.1 Terminology . 6
2.1.2 BPDU Formats . 8
2.1.3 Mode of operation . 10
2.1.4 Disadvantages . 12

2.2 Rapid Spanning Tree Protocol . 13
2.2.1 Terminology . 13
2.2.2 BPDU format . 14
2.2.3 Mode of operation . 14
2.2.4 Improvements over STP 16

3 Architecture 18

3.1 LiSA . 19
3.1.1 Linux Multilayer Switch 20
3.1.2 Command Line Interface 22
3.1.3 Linux distribution . 23

3.2 RSTP module architecture . 24
3.2.1 Kernel sub-module . 26
3.2.2 Userspace RSTP implementation 27
3.2.3 CLI sub-module . 31

4 Implementation 32

4.1 RSTP integration with LiSA . 33
4.2 CLI entries . 34
4.3 RSTP implementation . 38

4.3.1 Finite state machine implementation 39

5 Testing and results 46

6 Conclusions 49

ii

List of Figures

1.1 STP disables connections that form a loop 3

2.1 Loop-free network with active connections 6
2.2 Port states . 8
2.3 Network depicting all STP port roles 9
2.4 Designated bridge and ports . 10
2.5 Alternate and backup ports . 13
2.6 Example network for RSTP's mode of operation 15
2.7 Comparison of topology change noti�cations 16

3.1 Top-down view . 18
3.2 LMS architecture . 20
3.3 CLI architecture . 22
3.4 CLI snapshot . 23
3.5 Multiplexing multiple CLI connections on a Linux system 24
3.6 RSTP implementation architecture 25
3.7 RSTP kernel sub-module . 27
3.8 High-level view on the implementation and its e�ects 27
3.9 RSTP implementation . 30
3.10 CLI sub-module . 31

4.1 Implementation architecture . 32
4.2 Port structure from an implementation point of view 38
4.3 Lost signal using condition variables 41
4.4 Example states and transitions 42

5.1 Network used for testing RSTP 47

iii

Notations and Abbreviations

ASIC � Application-speci�c integrated circuit
CLI � Command Line Interface
DSAP � Destination Service Access Point
FSM � Finite state machine
IEEE � Institute of Electrical and Electronics Engineers
LAN � Local area network
LiSA � Linux Switching Appliance
LLC � Logical Link Control
LMS � Linux Multilayer Switch
MAC � Media access control
NIC � Network Interface Card
OUI � Organizational Unique Identi�er
RSTP � Rapid Spanning Tree Protocol
SSAP � Source Service Access Point
STP � Spanning Tree Protocol
VLAN � Virtual LAN

iv

Chapter 1

Introduction

The fundamental problem of any network is the way information is sent from
one node to another. The issue's complexity is increased by the fact that the
network may be divided into several sub-networks, thus creating the need for an
inter-network communication mechanism.

Two major paradigms are used in telecommunications for describing the way
user messages reach di�erent nodes of a network : packet switching and circuit
switching.

Baran developed the concept of packet switching during his research at the RAND
Corporation for the US Air Force into survivable communications networks . He
�rst presented the idea to the Air Force in the summer of 1961 and then published
it as RAND Paper P2626 in 1962. The paper focuses on three key ideas: �rst, use
of a decentralized network with multiple paths between any two points; second,
dividing complete user messages into what he called message blocks (later called
packets); then third, delivery of these messages by store and forward switching.[2]

The packet switching concept was a radical paradigm shift from the prevailing
model of communications networks using dedicated, analog circuits primarily
built for audio communications, and established a new model of digital systems
that break messages into individual packets that are transmitted independently
and then assembled back into the original message at the far end. The conceptual
breakthrough advantage of packet switching was enabling the construction of data
networks at much lower cost with greater throughput, �exibility, and robustness
by routing multiple communications over the same wire at the same time.[3]

The second paradigm, circuit switching, consists of establishing a circuit between
nodes and terminals before the users may communicate, as if the nodes were
physically connected with an electrical circuit. The bit delay is constant during
a connection, as opposed to packet switching, where packet queues may cause
varying packet transfer delay. Circuit switched networks are still in use today
but on a lower scale than packet switched networks.[4]

1

CHAPTER 1. INTRODUCTION 2

Packet switching is well-known for its use in today's Internet and local area
networks. The Internet uses the Internet protocol suite over a variety of Link
Layer protocols such as Ethernet and frame relay which are very common. The
use of packet switching in local area networks is called LAN switching and the
devices that implement it are called switches. Switches can operate on several
layers of the OSI stack but the term usually refers to a device that processes and
routes data at the Data link layer.

Layer 2 switching is hardware based, which means it uses the MAC address from
the host's NICs to decide where to forward frames1. Switches use ASICs to build
and maintain �lter tables (also known as MAC address tables)[5]. A switch's
implementation of di�erent layer 2 protocols are usually a mix between hardware
and software logic, the hardware being used in areas where speed is critical.

LiSA , short for Linux Switching Appliance, is an open-source software project
built for the GNU/Linux operating system that aims to provide its users with
all the necessary instruments for implementing and maintaining an e�cient and
reliable switching solution at a low cost. The project was designed to be used in
medium and small-sized networks. As opposed to usual hardware-driven imple-
mentations, LiSA o�ers a software approach to switching by utilizing the Linux
Kernel networking stack and adding its own switch-speci�c functionality.

Since LiSA is practically a software implementation of what normally is a hardware-
based logic, it might seem that there is no advantage in using it. On the contrary,
LiSA provides several bene�ts that hardware implementations do not have. Many
of these advantages stem from the fact that it is based on the Linux operating
system. First of all this means it is not tied to a speci�c hardware architecture.
It is only limited to the architectures supported by Linux, of which we mention :
ARM, x86, MIPS, PowerPC and many more2. Secondly, it is not dependant on
the network hardware. As long as there is a Linux device driver for the speci�c
NIC which LiSA is supposed to handle, no problems will be encountered. Finally,
Linux is well-known for its ability to run well on older systems and on embedded
devices, that is, devices that have important resource constraints. This provides
an advantage since one of LiSA's main objectives is to run on such devices.

Whether a network designer chooses a hardware or software approach to switch-
ing, he has to be certain that the chosen solution addresses all of the layer's
problems, especially those that are critical and that could render the network
unusable. Usually, when a network is designed, multiple connections between
di�erent components are created, in order to ensure a certain degree of redun-
dancy. Redundant links make the network more tolerant to faults, since a bad
connection doesn't imply that the whole network goes down. In turn, this creates
another problem because these links usually create loops in the network. Having

1Layer 2 packets are usually called frames
2As of version 2.6.30 the Linux kernel supports a number of 22 main architectures, plus

di�erent variations on them

CHAPTER 1. INTRODUCTION 3

layer 2 loops in a network can lead to serious performance problems since frames
can consume a large part of the available bandwidth.

Figure 1.1: STP disables connections that form a loop

For example, Figure 1.1 shows a network made out of two hosts, A and B, and
three switches labeled from 1 to 3. Suppose host A sends a broadcast message1.
Switch 1 will not �nd the destination address in its �ltering table, so it will
forward the message on all links except the one that the message came from :
the link to Switch 3 and the link to Switch 2. Switch 2 will receive the message
and will react in the same manner as Switch 1, so it will forward the message to
Switch 3. The result is that Switch 3 receives two copies of the initial message,
and it will forward each copy both to host B and to the other switches. Even
though the broadcast message has now reached all hosts (in our case, host B),
there are copies of the message moving through the network that will spawn even
more copies because of the existing loop. This is called a broadcast avalanche
and it has a signi�cant negative impact on network performance.

A solution to this problem is the layer 2 Spanning Tree Protocol which creates
a logical tree topology, thus making sure that no loops are active in the network.
One possible outcome of the protocol is shown in Figure 1.1, where the connection
between Switch 2 and Switch 3 has been disabled so Switch 2 will now stop
forwarding messages on that link and will also ignore2 messages coming from it.
Most switches o�er a STP implementation, so it's only natural that a software
approach to switching such as LiSA should have this capability too. The 802.1D
Spanning Tree Protocol (STP) standard was designed at a time when the recovery
of connectivity after an outage within a minute or so was considered adequate
performance. Cisco enhanced the original 802.1D speci�cation with features such
as Uplink Fast, Backbone Fast, and Port Fast to speed up the convergence time
of a bridged network. The drawback is that these mechanisms are proprietary
and need additional con�guration.

1Message that is sent to every device on the network
2It does not completely ignore them, since it adds the MAC address of the source to the

�ltering table. The exact details will be shown in subsequent chapters.

CHAPTER 1. INTRODUCTION 4

The 802.1w Rapid Spanning Tree Protocol can be seen as an evolution of
the 802.1D standard more than a revolution. The 802.1D terminology remains
primarily the same and most parameters have been left unchanged so users fa-
miliar with 802.1D can rapidly con�gure the new protocol comfortably. In most
cases, RSTP performs better than proprietary extensions of Cisco without any
additional con�guration. 802.1w can also revert back to 802.1D in order to inter-
operate with legacy bridges on a per-port basis, but this drops the bene�ts RSTP
introduces[6].

This thesis presents the implementation of the Rapid Spanning Tree Protocol in
LiSA, describing the protocol's details and speci�c issues concerning the integra-
tion with LiSA.

Chapter 2

Spanning Tree Algorithms

A spanning tree algorithm is used in bridged networks to dynamically determine
the best path from source to destination, while avoiding loops which can cause
bridges1 to continuously forward the same frames, as previously shown. An al-
gorithm of this type creates a hierarchical tree that spans the entire network,
including all switches. More than that, it determines all redundant paths and
makes only one of them active at any given time.

2.1 Spanning Tree Protocol

The Spanning Tree Protocol (STP) is a link layer network protocol that ensures
a loop-free topology for any bridged LAN. It is based on an algorithm invented
by Radia Perlman while working for Digital Equipment Corporation. In the OSI
model for computer networking, STP falls under the OSI layer-2. Spanning tree
allows a network design to include redundant links to provide automatic backup
paths if an active link fails, without the danger of bridge loops, or the need for
manual enabling/disabling of these backup links. Bridge loops must be avoided
because they result in �ooding the network[7].

The purpose of the spanning-tree algorithm is to have bridges dynamically build
a topology that is loop-free (a tree) and that still has connectivity between every
pair of LANs. The algorithm accomplishes this by sending special messages
containing information about the bridges. These messages allow the bridges to
elect a single bridge as the root of the spanning tree and also compute the shortest
path from themselves to that bridge.[8]

Before going into the details of the Spanning Tree Protocol, a few related terms
have to be explained.

1The terms bridge and switch will be used interchangeably

5

CHAPTER 2. SPANNING TREE ALGORITHMS 6

2.1.1 Terminology

Tree Topology - The Spanning Tree Protocol creates such a logical topology in
order to eliminate loops. Like any tree, it has a root, which in this case is a switch
called the Root Bridge, and its role is to collect and distribute noti�cations about
topology changes 1. Another important observation is that the topology leaves
no segment unreachable, so even if not all paths are active every node in the
LAN has connectivity. Figure 2.1 depicts a simple loop-free network with active
connections that span from the root (Root Bridge).

Figure 2.1: Loop-free network with active connections

Bridge Identi�ers - Since bridges have to be properly accounted for in the algo-
rithm, there needs to be a way to uniquely identify them in the network, including
their ports. Thus, each bridge has a Bridge identi�er which is a unique 64-bit
�eld, representing the concatenation of a 16-bit priority value and a 48-bit MAC
address. The MAC address is usually chosen as the address of the lowest num-
bered port. The priority �eld gives network administrators the ability to control
the outcome of the algorithm by assigning a low priority value. If the outcome
depended solely on the MAC address, a manufacturer whose OUI provided a
numerical advantage over another's would automatically cause that company's
bridges to become Root Bridges.

Port Identi�ers - The same way individual bridges have unique identi�ers, each
port on a bridge is assigned a Port Identi�er locally unique for that bridge. It is
composed of an 8-bit con�gurabile priority �eld and an 8-bit port number. Port
numbers range from 1 to N, where N is the number of ports on the device. The
priority �eld in the Port Identi�er is used in a manner identical to the priority
�eld in the Bridge Identi�er, so it can be con�gured in such a manner that the
resulting topology is independent of the numbering of the ports within a bridge.

1This is only valid for STP, since RSTP decentralizes this process

CHAPTER 2. SPANNING TREE ALGORITHMS 7

Root Bridge - This is the bridge that will represent the root of the tree, after
the algorithm has �nished. Only one Root Bridge can exist. The Root Bridge is
elected according to the Bridge Identi�er of each switch. Like mentioned before,
there are two parts to the Bridge ID: a user selected priority and the MAC address.
The switch with the lowest numerical value of the priority component becomes
the Root Bridge. When more than one switch has the same priority value, the
one with the lowest MAC address becomes the Root Bridge. An example can be
found in Figure 2.1 where the switch with the lowest ID has been elected as the
Root Bridge.

Designated Bridges - A simple way to prevent loops in the network is to ensure
only one bridge is responsible for forwarding tra�c from the direction of the root
into any given link (branch). As long as only one active path from a root to
any end node (leaf) exists, there will be no loops in the topology. The bridge
responsible for forwarding tra�c in the direction from the root to a given link
is known as the Designated Bridge of that link. For example, in Figure 2.1
the bridge with ID equal to 1 can be considered Designated Bridge for the link
between itself and the bridge with ID 3.[8]

Port States - There are �ve operational states assigned to each port by STP:
Disabled, Blocking, Listening, Learning, and Forwarding:

• Disabled - A disabled port is administratively shut down. This state is not
o�cially part of the 802.1 standard but most network equipment suppliers
take it into consideration.

• Blocking - This is the �rst state a port enters after it has been opened.
The only di�erence from the disabled state is that now the port accepts
BPDUs. Still, the port does not do anything useful with them since frame
forwarding and MAC address learning are still disabled in this state.

• Listening - From blocking mode a port will reach this state. Here, it will
receive and accept BPDUs, just like the blocking state, and, in addition to
that, it will also send out BPDUs. Frame forwarding and MAC address
learning are disabled.

• Learning - Once a port reaches this state it enables MAC address learning.
The port starts adding entries in the MAC address table by looking at the
source address of incoming frames. Frame forwarding is still disabled.

• Forwarding - A port in this state forwards and receives data frames, sends
and receives BPDUs, and places MAC addresses in its MAC table.

The states and the corresponding transitions are shown in Figure 2.2.

Path cost - The Spanning Tree Protocol attempts to con�gure the network such
that every station is reachable from the root through the path with the lowest
cost. The cost of a path is the sum of the costs of the links attached to the Root
Ports in that path.

CHAPTER 2. SPANNING TREE ALGORITHMS 8

Figure 2.2: Port states

Port roles - A port role is a function STP and RSTP assign to each port. STP
assigns one of the following roles: Root Port, Designated Port, or Blocking Port.
These ports can be seen in Figure 2.3.

• Root port - A root port is the port closest to the root bridge in terms of
path cost. When a switch has multiple paths connecting it to the root, the
best path is determined based on the message priority vector carried inside
the Bridged Protocol Data Unit (BPDU) and the receiving port ID. The
port with the best priority vector becomes a root port while the remaining
ports become alternates.

• Designated Port - A port is designated if it can send the best BPDU on the
segment to which it is connected. All bridges connected to a given segment
listen to each other's BPDUs and agree that the bridge sending the best
BPDU is the designated bridge for the segment.

• Blocking port - A blocking port does not forward user data. A port is
assigned this role if by adding the link to which the port is connected to ,to
the topology, a loop would be created.

2.1.2 BPDU Formats

Bridges learn and exchange information about each other in order to calculate
spanning tree by sending small packets called Bridge Protocol Data Units (BP-
DUs). STP uses two di�erent BPDUs: Con�guration BPDUs and Topology
Change BPDUs.

• Con�guration BPDUs originate from the root bridge every hello time and
carry all information required to calculate spanning tree topology. Other

CHAPTER 2. SPANNING TREE ALGORITHMS 9

Figure 2.3: Network depicting all STP port roles

bridges listen for Con�guration BPDUs on their root ports and forward
them on their designated ports.

• Topology Change BPDUs (TCN BPDUs) are sent in the direction of the
root by the bridge which detected a topology change. When the root bridge
receives a TCN BPDU, it must then inform other switches a change has
occurred in the current topology. It does so by setting a Topology Change
(TC) �ag in every BPDU it sends for a period of time (speci�ed as Forward
Delay + Max Age). When a switch receives a BPDU with a TC �ag set,it
switches its aging time from long to short in order to age out Filtering
Database entries more rapidly.

When transmitted on a LAN, BPDUs are further encapsulated in MAC frames
using LLC Type 1, with a DSAP and SSAP of 0x42. The MAC Source Address
is the MAC address of the port through which the frame is being transmitted.
The MAC Destination Address is the multicast address 01-80-C2-00-00-00.
The use of a multicast address as the destination for all spanning tree BPDUs
is important. This allows bridges to send BPDUs to all other bridges without
having to know the unicast address of the bridge ports that will receive the
BPDU, or whether there are any bridges on the link to hear the message at
all. This address is within the range of addresses reserved by IEEE 802.1D
for link-constrained protocols. Frames with destination address in the range of
01-80-C2-00-00-00 through 01-80-C2-00-00-0F are never forwarded by
an IEEE 802.1D-conforming bridge. This prevents the unwanted propagation of
BPDUs beyond the link on which they are signi�cant[8].

CHAPTER 2. SPANNING TREE ALGORITHMS 10

2.1.3 Mode of operation

The spanning tree topology for a given set of links and bridges is determined
by the Bridge Identi�ers, the link costs, and (if necessary) the Port Identi�ers
associated with the bridges in the network. Logically, we need to perform three
operations:

Determine (elect) a Root Bridge. Since the desired topology is a tree, only one
Root Bridge must be selected. The election algorithm is involves selecting the the
bridge with the numerically lowest Bridge Identi�ere. If a new bridge is added
to the network, having a smaller Bridge Identi�er, then it will become the Root
Bridge. Similar, if the current Root Bridge disconnects from the network then
the bridge with the next smallest Bridge Identi�er will become the Root Bridge.
Administrators have control over which bridge will be the default root, through
the priority �led in the Bridge Identi�er.

Figure 2.4: Designated bridge and ports

Determine the Designated Bridges and Designated Ports for each link. After the
Root Bridge has been determined, there has to be identi�ed, for each and every
link in the network, a single bridge responsible for forwarding tra�c from the
root to that link. This is the Designated Bridge for the link in question. The
Designated Bridge for each other link will be the bridge that o�ers the lowest-cost
path back to the root. The path cost is simply the sum of the link costs over the
path, with the link costs determined by the data rate of each link. It is possible
that two bridges can o�er the same path cost back to the root. In Figure 2.4,
both bridge 1 and bridge 2 o�er a path cost back to the root of 100 for link B
and are thus equally quali�ed to serve as Designated Bridge for link B. In the
event of such a tie, the bridge with the lowest-numbered Bridge Identi�er will
become the Designated Bridge. Similarly, it is possible that a Designated Bridge
can have two ports on the same link, such as bridge 1. Only one of the ports can
be the Designated Port for the link; the chosen port is the port with the lowest-
numbered Port Identi�er. Again, network administrators can decide in advance
exactly which ports will become designated through manipulation of the priority

CHAPTER 2. SPANNING TREE ALGORITHMS 11

�eld in the Port Identi�ers. The spanning tree is completely de�ned by the set
of Designated Bridges (including the Root Bridge) and Designated Ports.[8]

Maintain the topology over time. Now that the spanning tree is complete, care
must be taken to ensure that changes don't cause loops to form or portions of the
network to become separated from the tree. The events that might instigate a
change in the topology are the removal, addition, failure, or recovery of a bridge
or link, or the recon�guration of any of the spanning tree election parameters
through network management. There may be a lot of bridges and/or links being
added at once; the operation of the protocol accommodates this without invok-
ing any special start-up mechanisms. The STP operates on the principle that
all Designated Bridges (including the root) advertise their current understand-
ing of the spanning tree and their internal state by emitting, on a regular basis
through their Designated Ports, Con�guration Messages (encoded as Bridge Pro-
tocol Data Units, or BPDUs). All bridges listen to these Con�guration Messages
and compare the advertised information to their own internal information. When
a bridge's internal information (for example, Bridge Identi�er or path cost) indi-
cates that it has a better claim to become the Root Bridge, Designated Bridge,
and so on, than that being advertised, it takes action to change the topology
appropriately. When the spanning tree has converged to the proper topology,
the regular emission of Con�guration Messages maintains that topology, keeping
inactive bridges and ports from becoming active and creating undesirable loops.
In the event of a link or bridge failure, the lack of regular Con�guration Messages
from the now-failed link or bridge (i.e., a timeout) may cause previously inactive
bridges and ports to become active in order to maintain maximum connectiv-
ity. The spanning tree topology will then re-converge to the best topology now
available [8].

Steady-state operation. In normal operation, the protocol operates as follows:

• Once every Hello time (usually 2 seconds), the Root Bridge transmits a
Con�guration BPDU. This indicates that the sender is the Root Bridge
and that the path cost is 0, because it is being sent by the root.

• All bridges connected to the Root Bridge receive the BPDU and pass it to
the STP entity within the bridge. BPDUs are never forwarded through the
bridge as are data frames from end stations.

• Designated Bridges use the received information and create a new Con�gu-
ration BPDU, updating the values of the Bridge Identi�er, path Cost, Port
Identi�er appropriately and send it on each Designated port.

• In turn, bridges connected to these, go through the same process of receiv-
ing the BPDU, analyzing it and sending it out on all Designated ports.
This process repeats until the message has been sent to every node in the
spanning tree.

• When a bridge receives one the mentioned BPDUs, it compares the infor-

CHAPTER 2. SPANNING TREE ALGORITHMS 12

mation from that BPDU with the locally stored information. If a bridge's
own identi�er is numerically lower than the currently advertised Root Iden-
ti�er, then this bridge should attempt to become the root. It would so
by initiating a topology change and then sending Con�guration Messages
with its own Bridge Identi�er as the Root Identi�er. Another possibility
is that the bridge might have a lower-cost path to a given link than the
cost currently advertised by a Designated Bridge. Again, if that is the case,
it would initiate a topology change and attempt to become a Designated
Bridge for that link.

2.1.4 Disadvantages

The main disadvantage of the Spanning Tree Protocol is its convergence time.
The convergence time is the time it takes the network to recover after a topology
modi�cation. For STP this usually is somewhere between 30 to 50 seconds,
depending on how well the network is designed and the quality of the protocol's
parameters con�guration.

Another disadvantage is that old MAC addresses are still present in the MAC
table long after there has been a change in the network's topology. This can
cause temporary loops since frames are sent on the wrong ports, due to invalid
information found in the MAC table. This table needs to be relearned every time
the network's topology changes or frames may be sent to the wrong ports. A
topology change such as a link failure can cause some nodes to become connected
to di�erent switches. Even though no stations have been physically moved, it
can appear to the switches as though stations have been lifted from one part
of the network and reconnected into another. In order for tra�c to reach these
stations, switches need to age old information and relearn new node locations.
STP bridges do not �ush their MAC tables when they detect a topology change.
Instead, they send Topology Change Noti�cation BPDUs (TCN BPDUs) in the
direction of the root bridge, which then informs all bridges a topology change
has occurred. It may take several seconds before the TCN BPDU reaches the
root bridge and several more seconds before the BPDUs (with the TC �ag set)
reach other bridges on the network. Even then, STP switches do not �ush old
information immediately.Instead, they switch their aging timer from long to short
(a default value for the short timer is Forward Delay which equals 15 seconds).
After this time, if entries are not refreshed they are removed from the database[9].

In conclusion, we can say that the bulk of the protocol's decision-making logic
is handled by the root bridge. This is somewhat of a centralized solution, since
all other bridges have to wait for the root bridge to make a decision, before
making one themselves. This leads to increased convergence times and overall
bad performance.

CHAPTER 2. SPANNING TREE ALGORITHMS 13

2.2 Rapid Spanning Tree Protocol

The Rapid Spanning Tree Protocol was introduced by the IEEE as 802.1w. This
technology was then absorbed by IEEE 802.1D-2004. RSTP is based upon the
older STP standard and is backward compatible. RSTP was created to provide
faster recovery (convergence time) from topology changes and shares most of
STP's characteristics.

2.2.1 Terminology

All the terminology from the Spanning tree Protocol is valid for the Rapid Span-
ning Tree Protocol too. The di�erences that exist will be pointed out in the
following paragraphs.

Port States - Just as STP does, RSTP de�nes a set of operational sets that can
be assigned to each port. These states are: Discarding, Learning and Forwarding.
The Discarding state shows that a port does not participate in the active topology
and does not learn MAC addresses. RSTP replaces STP's Disabled, Blocking and
Listening states with the Discarding state. The other two states, Learning and
Forwarding have the same function as their correspondents from the Spanning
Tree Protocol.

Figure 2.5: Alternate and backup ports

Port roles - RSTP can assign one of the following roles to a port : Root Port,
Designated Port, Backup Port, Alternate Port. The Root and Designated roles
have the same functionality as the roles with the same name from STP. The
di�erence in this area between the two protocols is that RSTP splits the Blocked
role into two di�erent roles : Backup and Alternate. Ports having one of these
roles do not forward user data, but serve as backups for the root and designated
ports.

• Backup port - A backup port is connected to the same LAN as a designated
port. Spanning tree blocks backup ports since the designated port provides
a better path from this LAN to the root bridge. Figure 2.5 shows a Backup
port.

CHAPTER 2. SPANNING TREE ALGORITHMS 14

• Alternate port - An alternate port provides a redundant connection to the
Root Bridge and can become a new Root Port in the event the current Root
Port loses its connection to a Root Bridge. In many cases, the alternate
port can become a new root port and transition into the Forwarding state
without a delay. Figure 2.5 shows an Alternate port[6].

2.2.2 BPDU format

RSTP uses only one type of BPDU called RSTP BPDUs. They are similar to
STP Con�guration BPDUs with the exception of a type �eld set to "version 2" for
RSTP and "version 0" for STP, and a �ag �eld carrying additional information.
The STP BPDUs use only two �ags: Topology Change and Topology Change
Acknowledge. RSTP uses six additional bits to encode the role and the state of
the port originating the BPDU, and two �ags to handle the proposal/agreement
mechanism. In 802.1D, a bridge that is not the root will produce a BPDU only
when it receives one on the Root Port. In RSTP, a bridge will send a BPDU
based on the hello time that is con�gured on the bridge (this is every two seconds
by default). It no longer needs to receive a BPDU from the root bridge in order
produce a BPDU and send it out[9].

The exact format of each type of BPDU can be seen in Appendix B.

2.2.3 Mode of operation

The Rapid Spanning Tree Protocol functions in almost the same manner as STP,
with a few key di�erences. Concerning the algorithm, it follows the same ideas
described in the Spanning Tree Protocol's mode of operation . This sub-chapter
shows how RSTP runs on an example network, pointing out the areas where it
di�ers from STP.

The initial RSTP convergence time is similar to that of STP. This is the time that
passes between the moment the switches are powered up and connected and the
moment when the topology has been computed and the network is stable. RSTP
shows its advantages when subsequent changes occur, that is after the network
has stabilized and all switches agree on the topology. Link failures occurring
after that, cause the change in topology to be rapidly propagated throughout the
network, much faster than in STP. Thus, in the given example, the focus lies on a
scenario where the topology is stable, but a link has failed (the one marked with
the red X).

The Spanning Tree Protocol acts in the following manner, when the link fails:
after the link has failed, bridge 1 and bridge 3 continue to wait for the duration of
the max age timer (which has a default value of 20 seconds) before deciding that
their path to the root bridge is no longer functioning. During that time, bridge

CHAPTER 2. SPANNING TREE ALGORITHMS 15

Figure 2.6: Example network for RSTP's mode of operation

3 does not accept BPDUs from bridge 2, marking them as inferior. After the
max age timer has expired, bridge 3 ages out protocol information on the port
connected to bridge 1, deciding that it has a path to the root bridge through the
other port. It elects that port as the new Root Port and sends BPDUs containing
this information to bridge 1. In order to ensure that all switches on the LAN
agree with the new topology, bridge 3 will not forward user data on its ports
for an additional 30 seconds, instead taking the ports through the listening and
learning states, before reaching the forwarding state. Eventually, bridge 1 will
�gure out that it has a path to the Root Bridge through bridge 3 so it will mark
the port connecting it to that bridge as a Root Port.

On the other hand, RSTP goes through the following steps. When bridge 1 loses
connectivity, it decides that it is the new root bridge and starts advertising that
to bridge 3. Bridge 3, recognizes that BPDUs received from bridge 1 are inferior
to that from bridge 2, so that means that it has no longer a path to the Root
Bridge. Thus, it immediately activates the secondary path through the Backup
Port making it the new Root Port and placing it directly in the forwarding state.
After that, it makes the previous Root Port a Designated Port and starts sending
BPDUs containing all this information. Bridge 1 accepts the information and
chooses the new Root Port while bridge 2 goes through a process known as a
sync operation with bridge 3 in order to move the port connecting them to the
forwarding state. This sync does not involve any timers, only BPDUs and thus
it is faster than the STP method[9].

CHAPTER 2. SPANNING TREE ALGORITHMS 16

2.2.4 Improvements over STP

As mentioned in the previous sub-chapter, STP makes the topology change noti-
�cation go through the Root Bridge �rst, and only after that it is distributed in
the rest of the network. The 30 second wait in STP takes into account that the
BPDU has to reach the Root Bridge before it reaches all other bridges. Thus,
STP switches do not generate their own BPDUs, they wait to receive them on
their root ports, and then they relay them to their designated ports. If the STP
bridge does not receive a BPDU for max age time (usually 20 seconds), it declares
the root bridge dead. RSTP di�ers in this respect, because every switch sends
its own BPDU whether it received one on its root port or not. Instead of waiting
for a max age time, an RSTP switch expects a BPDU within three hello times,
which means 6 seconds. This time is the time it takes for the protocol to detect
that a link has failed. Recovery after this detection has been made, is a lot faster
in RSTP due to these improvements. Thus, RSTP manages to decentralize the
protocol, as Figure 2.7 shows[6].

Figure 2.7: Comparison of topology change noti�cations

RSTP recognizes that there are situations where ports connect directly to end
stations and thus cannot create loops. Taking this into consideration, RSTP
allows ports to be con�gured as edge ports. This means that these ports do
not connect directly to other switches. Such ports do not go through the usual
spanning tree states, they go directly to forwarding. If a switch detects a BPDU

CHAPTER 2. SPANNING TREE ALGORITHMS 17

on the edge ports, it declares that port as a non-edge port. One example of an
edge port can be seen in Figure 2.6.

RSTP bridges, connected by point-to-point links, use the agreement/proposal
handshake mechanism instead of timers, to rapidly re-converge after a topology
change. When the bridges detect that the topology has changed they try to
transfer their new root and designated ports to forwarding and their alternate
and backup ports into blocking as fast as possible. This can be done by using an
agreement/proposal handshake mechanism which purpose is to avoid loops and
to ensure consistent assignment of port roles across the network.

Switches listen for network tra�c to learn which nodes (MAC addresses) are on
which ports, then store these MAC-to-port entries in their databases. Later,
when a frame arrives destined for one of these MAC address, it will be switched
to the proper port. A database of these MAC-to-port entries is called a �ltering
database. This database needs to be relearned every time a network topology
changes or frames may be sent to the wrong ports. A topology change such as a
link failure can cause some nodes to become connected to di�erent switches. Even
though no stations have been physically moved, it can appear to the switches as
though stations have been lifted from one part of the network and reconnected
into another. In order for tra�c to reach these stations, switches need to age old
information and relearn new node locations.

STP bridges do not �ush their �ltering databases when they detect a topology
change. Instead, they send Topology Change Noti�cation BPDUs (TCN BPDUs)
in the direction of the root bridge, which then informs all bridges a topology
change has occurred. It may take several seconds before the TCN BPDU reaches
the root bridge and several more seconds before the BPDUs (with the TC �ag
set) reach other bridges on the network. Even then, STP switches do not �ush
old information immediately. Instead, they switch their aging timer from long
to short (a default value for the short timer is Forward Delay which equals 15
seconds). After this time, if entries are not refreshed they are removed from the
database[9].

RSTP uses a more e�cient mechanism to purge old information. First of all,
every switch that detects a topology change sends BPDUs with the TC �ag
set. Secondly, the switch that detects a change purges old entries immediately.
Finally, every switch that receives a BPDU with a set TC �ag, purges old entries
immediately and ask other switches to do the same.

The end result of all these improvements is that RSTP has a re-convergence time
between tens of milliseconds to a few seconds. Compared to STP's 30 to 60
seconds, it is de�nitely a major performance gain.

Chapter 3

Architecture

The application's goal is to implement the Rapid Spanning Tree Protocol and
integrate its functionality with LiSA, an open-source project that aims to bring
switching capabilities to embedded devices. From an implementation point of
view the application can be seen as having two components : the protocol's logic,
which resides in user space, and a kernel space part that handles the frames,
learning and forwarding processes1. The latter part requires modi�cations to the
existing LiSA kernel code so STP/RSTP frames will be sent to our implementa-
tion. Also, new coded will be added to allow for learning and forwarding to be
enabled and disabled.

Figure 3.1: Top-down view

Figure 3.1 shows a generic view on the application and its relationship with the
existing LiSA project. Our goal is to add RSTP to the existing list of supported
protocols. The implemented protocols require interaction with the existing mod-
ules, namely CLI and LMS, which will be described in the chapters to come.
The application tries to maintain compatibility with current RSTP implementa-
tions by testing against devices that present a fully functioning protocol, such

1The term process should not be confused with the Unix term with the same name. Here,
and whenever it is in the same context as the learning and forwarding terms, it means activity

18

CHAPTER 3. ARCHITECTURE 19

as modern Cisco switches. This will ensure that any errors in the program's
logic will show up, because the testing environment is a network with a protocol
implementation that is guaranteed to be correct.

Given that the chosen protocol for implementation is RSTP, this also guaran-
tees backward-compatibility with the older STP protocol. The 802.1D standard
is closely followed so that all aspects are covered, including the one previously
mentioned.

3.1 LiSA

LiSA is an open-source application that started out as a graduate project in 2005
and aimed at:

• Layer 2 and layer 3 packet switching using a standard PC architecture

• Resolving Linux VLAN scalability issues

• Resolving performance with broadcast packets on both trunk and access
ports

• Providing basic VLAN switching features: VLAN switching, VLAN tag-
ging, inter-VLAN routing

• Cisco-like con�guration and user interface

More than that, it also aimed at becoming a framework for layer 2 protocols
prototyping and analysis. Layer 2 protocol implementation is not a trivial thing
to do in the Linux kernel because the bridge module is not easily extendible.
Thus, the framework should hide all of Linux's networking internals and provide
a clean API allowing for focus on protocol design and less on implementation
issues[10].

As mentioned earlier, LiSA's goal is to provide a uni�ed switching platform for
the Linux operating system. Linux already has several separate modules that
provide some of the functionalities that LiSA currently o�ers, such as the bridge
module that provides basic switching and the 8021q module providing VLAN sup-
port. Tests have proven though [11] , that a uni�ed approach that delivers both
functionalities in a single module yields better results in terms of performance.
By eliminating the need for virtual interfaces in per-VLAN packet switching and
reordering ports during packet �ooding, thus providing a minimum number of
socket bu�er operations, LiSA manages to perform better than the two modules
previously mentioned.

LiSA's architecture covers both kernel space and user space. A high-level view on
LiSA would consist of a kernel module that implements the switching function-
ality, and the rest of the user space applications designed to add new protocols

CHAPTER 3. ARCHITECTURE 20

or to present an interface to the user. The kernel module's main task is to im-
plement the forwarding logic. In doing so, it has to interact with at least two
additional components : the forwarding table and the VLAN table. Thus, from
a high-point of view the kernel module takes as input packets from the network,
makes a decision based on data from the two tables mentioned before and it
outputs the packet on the corresponding port. Also, the kernel module has to
provide an interface to the userspace, through which users can read and modify
di�erent switch-speci�c parameters, such as VLAN assignment, priority change,
etc. Applications on the user side concern themselves with handling user input
and implementing protocols using the interface provided by the kernel. Commu-
nication between them and the kernel module is done through the Linux-provided
ioctl system call.

A more detailed view on LiSA's architecture would show that structurally, the
project can be divided into three main components:

• a kernel module (LMS, or Linux Multilayer Switch)

• an userspace application for con�guring the parameters (CLI, or Command
Line Interface)

• a lightweight Linux distribution targeted at embedded systems

The kernel module is the one responsible for all switching-related logic, that
is, frame handling, forwarding table and VLAN table manipulation, providing
ioctl calls to userspace, and so on. Because most network administrators are
familiar with the interface provided by Cisco IOS's CLI, a similar interface is also
presented to the user through the CLI module. Thus, the CLI module acts as
the link between the user and the actual switch functionality.

3.1.1 Linux Multilayer Switch

Figure 3.2: LMS architecture

CHAPTER 3. ARCHITECTURE 21

Figure 3.2 shows the elements composing the Linux Multilayer Switch[12]:

• Switching engine (SW) - implements the following : packet receiving, switch-
ing decision, required algorithms for sending the packet on the appropriate
port. When a frame is received by the network driver and passed to the
kernel for processing, it is passed to the Switching Engine. If the incoming
interface has been registered in the switch, the packet will be handled by
the Switching Engine alone, and it will not be passed to the rest of the
Linux packet reception code. If not, the packet will be handed o� to the
rest of the kernel reception routine.

• Forwarding Database (FDB) - contains all the routines required for access-
ing and modifying the data structure used for implementing the switch's
forwarding database plus the data structure itself. This database is initially
empty and entries are added as the SW receives frames. If an entry is not
found in this database, then the received frame is sent on all ports except
the one it came from. This database will have to be cleared when RSTP
decides that a change in topology has occurred, or, in case STP is running,
the aging times will have to be lowered.

• VLAN Database (VDB) - contains all the routines required for accessing
and modifying the data structure used for implementing the switch's VLAN
database plus the database itself. The database contains the list of all in-
use VLANs and the speci�c con�guration options pertaining to each VLAN,
such as the name, aging time, etc. The VDB is useful for expanding the
RSTP into an equivalent, per-VLAN protocol called MSTP.

• Virtual Interfaces (VIF) - the implementation of a generic net_device1 along
with its associated methods. Virtual Interfaces provide the easiest way of
implementing inter-VLAN routing.

• Userspace con�guration (IOCTL) - handles con�guration commands re-
ceived from userspace through the ioctl() call. This is a standard method
for user-to-kernel communication used in many operating systems. Short
for input/output control, ioctls are usually employed to allow userspace to
communicate with hardware devices and kernel components. This method
of using one system call for communication between userspace and device-
drivers was chosen because of the large number of devices available, which
would make creating system calls for each of them an impossible task. It
is used in the RSTP implementation too, for enabling and disabling the
learning and forwarding routines, since this requires access to the kernel
part of LiSA.

1The net_device data structure stores all information regarding a network device. There
is one such structure for each device, both real ones (such as Ethernet NICs) and virtual ones
(such as bonding). The data structure is de�ned in include/linux/netdevice.h)

CHAPTER 3. ARCHITECTURE 22

3.1.2 Command Line Interface

Figure 3.3: CLI architecture

Figure 3.3 shows the elements composing the Command Line Interface:

• CLI Parser - API for parsing Cisco-like commands; provides basic tokeniz-
ing functions and validation against menu tree structures. The tokenizing
function is initially called with the whole command as input and the root
menu tree node as context. As it extracts the �rst token from the input,
it is iteratively called on the remaining input. A CLI command is formed
from a succession of words separated by a variable number of white spaces.
Commands can be in full or abbreviated formats, just like their Cisco coun-
terparts, and the CLI is capable of handling both situations.

• Readline CLI abstraction - Integrates the CLI Parser with readline library,
providing Cisco-like CLI behavior. The GNU Readline library provides a set
of functions for use by applications that allow users to edit command lines
as they are typed in. The Readline library includes additional functions
to maintain a list of previously-entered command lines, to recall and per-
haps reedit those lines, and perform csh-like history expansion on previous
commands.

• LiSA Menu Tree - Data structures for all LiSA CLI commands. These
data structures are de�ned using C's dot notation to refer to each of the
structure's �elds. This allows de�nitions to be chained in a tree-like struc-
ture, starting from the root node, going all the way down to the complete
commands. Di�erent trees are shown in the CLI, depending on the user's
privilege level. Details will be given in the following chapter.

• LiSA Command Handlers - Functions that actually execute the CLI com-
mands. These are called when a user enters a valid command, and they
usually interact with the shared memory area, where all switch con�gu-
rations are stored. Depending on the command, they also might have to
resort to interprocess communication mechanisms in case the command's
target resides in another process.

One last thing to mention about the CLI component is that it is in fact, generic
and it is not necessarily tied to LiSA. To do that, a layered approach has been
taken when designing the CLI. Just like any other layered stack, such as the
OSI networking stack, the main idea is that lower layers don't have to know

CHAPTER 3. ARCHITECTURE 23

Figure 3.4: CLI snapshot

anything about the upper layer implementation, while the upper layers use the
whole functionality provided by the lower layers. Thus, the bottom-most layer is
a generic layer, that de�nes simple required data structures in order to properly
function. The next layer is known as the readline shell, or rlshell, and it extends,
in an object-oriented manner the data structure de�ned by the lower layer. Doing
something like this in C, which is not an object-oriented programming language,
requires that the upper structure has a �eld containing the lower structure. The
�nal layer of the CLI is the actual LiSA-bound component, and it encapsulates
structures from both lower layers. Such an approach means that the CLI could
easily be extendible to another application, using the lowest layer as a starting
point.

3.1.3 Linux distribution

The idea behind the Linux distribution is to provide a minimalistic operating
system that can run on an embedded device. The result was a distribution that
occupied a little over 12MB of physical disk space and contained all the packages
required for the operating system to boot and run, plus the libraries required to
support LiSA. These libraries are mostly tied to the Command Line Interface,
such as the GNU Readline library.

Figure 3.5 shows the general architecture of a system that is running Linux com-
piled with Linux Multilayer Switch support, and has the Command Line Interface
set up. The system can be con�gured both through a serial-line connection and
a remote telnet session. The serial connection is important in the initial setup
phase when the switch is not properly con�gured. During this stage, the network
administrator has to set passwords and de�ne a virtual interface through which
remote connections can be set up. For remote connections the system has a dae-

CHAPTER 3. ARCHITECTURE 24

Figure 3.5: Multiplexing multiple CLI connections on a Linux system

mon listening on port 23 that multiplexes all incoming connections. For every
connection a new process is created that initially executes an authentication pro-
gram called swlogin. If the user is properly authenticated then the login program
will successfully launch the CLI. For a serial-line connection the swcon program
will launch the authentication routine only if the system has passed through the
previously mentioned setup phase.

The runtime con�guration of the system contains the kernel module and a shared
memory area. This area is accessed indirectly by all CLI processes, when they
issue commands. As mentioned before, most commands act upon con�guration
parameters of di�erent protocols or even the switch itself. These parameters are
stored in this shared memory. Naturally, this area has to be protected from con-
current accesses, that is, a mechanism for stopping two di�erent processes from
modifying the same variable at the same time is required. Such a mechanism is
already implemented, but new variables de�ned in this area will have to imple-
ment their own wrappers on top of this mechanism, so processes can safely access
them.

3.2 RSTP module architecture

The architectural design of the RSTP implementation has to answer the following
questions:

• Where does the input come from, and how many types of input are there?

• What are the constraints imposed by the protocol's logic?

• How can the implementation be integrated with LiSA?

The above �gure was the result of putting the answers to all the questions to-
gether.

First, there are two types of input that have the capability of triggering changes
in the execution of RSTP's logic. There is user input, manifested when the
user modi�es RSTP's running parameters and there are received BPDUs, which,
depending on their contents, might trigger a topology change and put the protocol
to work. User input is handled by the CLI module, which o�ers a interface

CHAPTER 3. ARCHITECTURE 25

Figure 3.6: RSTP implementation architecture

through which users can alter the protocol's con�guration at any time. That
means the module has to have entries that speci�cally alter RSTP's parameters.
That is one the �rst tasks our module has to accomplish. The arrow from the
RSTP menu entries to the RSTP con�guration means that the entries are capable
of altering variables existing in that shared memory area1.

The other type of input are received BPDUs. These will end up all the way up
to the protocol implementation since the latter depends on their content. The
part of the implementation handling this type of input is the LMS module. More
speci�cally, it is the RSTP kernel modi�cations to the LMS module that allow
it to handle the BPDUs. Without these modi�cations, BPDUs would simply
be lost, since no STP entity exists in LiSA. With the mentioned modi�cations
in place, the BPDUs are now sent to the protocol implementation, where their
contents will be interpreted and acted upon. The arc between the RSTP kernel
modi�cations and the protocol has an arrow at both heads, since the protocol can
call upon routines de�ned in that area. These routines implement the enabling
and disabling of the forwarding and learning actions.

The second question �nds answers in the previous two paragraphs. The protocol's
logic dictates that when a BPDU is received, one of the state machines shall be
triggered and will start executing. This will have an avalanche e�ect, since all
other state machines will �nd that the conditions they are waiting upon are now

1Actually, one might think looking at the picture, that the module contains the whole shared
memory area, but that is not the case. It only contains the part of the memory where RSTP's
con�guration resides. The picture would have been uselessly complicated if I were to draw the
box so that only that part were contained

CHAPTER 3. ARCHITECTURE 26

ful�lled, as a result of the received BPDU. Not only BPDUs can have this e�ect,
since the protocol depends on a number of timers to do its job. When these
timers expire, some of the state machines might have to execute as a result. Most
of these timers are set with values that can be changed by the user, when a
corresponding entry from the menu tree is used.

So far, the constraints have been only about input, but what about output? In
order for the protocol to operate correctly, we have to make sure that the imple-
mentation is fast enough to be able to process received BPDUs at an acceptable
rate1. This is a very important constraint that will become obvious when we
discuss the protocol's implementation. The decisions on how to implement the
protocol can have a great impact on its speed, and it can go as far as by making
a bad choice during the program's design process, the implementation will not
give expected results. Other constraints relate to the internals of the protocol
and will be mentioned in the following sub-chapters.

As for the �nal question, related to integration with LiSA, it also �nds an answer
in the �gure. The protocol's implementation is relatively independent of LiSA,
since it only needs to receive BPDUs as input, and has to have access to the
protocol's con�guration parameters. We've mentioned earlier that LiSA provides
a good framework for user space protocol implementation, so the �nal choice was
to implement the protocol entirely in user space, and communicate with the kernel
side when the switch's ports would change their state. Thus, the integration with
LiSA consisted of adding some kernel code so communication between the user
space part and the kernel space part would be possible through the ioctl interface.
Another step towards integration is adding menu entries that respect the format
and implementation guidelines described earlier in the CLI sub-chapter.

3.2.1 Kernel sub-module

The kernel sub-module actually refers to the kernel modi�cations presented in
Figure 3.6. A more detailed description can be seen in the following �gure.

The sub-module has two important roles to play:

• Identify incoming BPDUs and send them to the user space protocol imple-
mentation.

• Allow the user space protocol implementation to enable or disable the learn-
ing and forwarding process.

Identifying BPDUs is only a matter of comparing the incoming frames' DSAP,
SSAP and LLC types against the correct values. Once a frame matches these
values it gets sent to the upper layers, where our protocol implementation resides.

1The 802.1D standard mentions that a bridge will send no more than txCount BPDUs per
second out of a port. The variable txCount's value defaults to 6.

CHAPTER 3. ARCHITECTURE 27

Figure 3.7: RSTP kernel sub-module

Concerning the enabling and disabling of the learning and forwarding processes,
this is done by using ioctl calls from the protocol implementation.

3.2.2 Userspace RSTP implementation

This part of the application handles the protocol's logic. This is the part where
all the decisions are made concerning port states and roles, and it represents the
core of the entire implementation. Without going into the exact details, and
viewing it as a black box, the implementation takes as input either BPDUs or
user modi�cations to the protocol's con�guration, and produces as output other
BPDUs and makes decisions related to the ports' behaviour. This can be seen in
Figure 3.8.

Figure 3.8: High-level view on the implementation and its e�ects

BPDUs are received because of the kernel modi�cations that allow frames to be
identi�ed and correctly forwarded to the implementation. Of course there has

CHAPTER 3. ARCHITECTURE 28

to be a mechanism that allows BPDUs from di�erent ports to reach the imple-
mentation, and to remember from what ports the BPDUs came since part of the
protocol's logic relies on this information. User input is handled by the CLI en-
tries we previously talked about. Through these entries, a user is able to modify
both the global con�guration of the protocol and the individual ports' con�gura-
tion. Thus, indirectly, the protocol implementation takes these modi�cations as
input, since it accesses these con�gurations when executing the logic.

The protocol makes modi�cations on each port's con�guration in order to get
the port in a di�erent state, or role. More than that, the implementation also
handles sending new BPDUs on each port. These BPDUs have to be created and
their �elds have to have the right values. For that, the protocol requires storage
for each port, and this is the �rst sign that the logic has to be split on a per-port
basis.

Going into the actual protocol's details, as Appendix A shows, the protocol's
logic is implemented with the help of �nite state machines. There are a total of
10 state machines, one of which is not shown in the picture. These are:

• Port Timers state machine (PTI)- This state machine's sole job is to decre-
ment all the timers related to a speci�c port. There are nine timers per
port that have to be decremented. This is the state machine not shown in
the picture.

• Port Receive state machine (PRX) - This machine handles incoming BP-
DUs, by checking their version and updating variables as necessary.It marks
the BPDU as being a STP-type BPDU, that is either a Con�guration BPDU
or a Topology Change BPDU, or an RSTP-type BPDU. The format of these
BPDUs has been described earlier in the paper. This machine also signals
that a BPDU has been received to the Port Information state machine.

• Port Protocol Migration state machine (PPM) - The job of this FSM is
to fall back on the STP implementation in case an STP-type BPDU is
received. If a switch that does not support RSTP is added to the network,
then this machine will see that the received BPDU is correlated to an STP
implementation, so it will signal all other FSMs that the RSTP logic is no
longer in e�ect, and that the switch will run STP logic.

• Bridge Detection state machine (BDM) - RSTP introduces a new role for
ports, called Edge port. This role can be assigned to a port by a network
administrator when the port is sure to be connected to an end station
and not to another switch. Thus, the port is immediately moved in the
forwarding state, and does not count when the spanning tree is built. This
machine enables and disables the �ag that signals if a port is an edge port.

• Port Transmit state machine (PTX) - This FSM implements the sending
of BPDUs. It collects information created by the other FSMs and puts it
into a new BPDU after which it sends the BPDU on the port. The type

CHAPTER 3. ARCHITECTURE 29

of BPDU it sends is given by a few �ags that are set by the Port Protocol
Migration machine.

• Port Information state machine (PIM) - This handles the proposal/agree-
ment mechanism discussed earlier on. It also updates the port's con�gura-
tion with the information received from the BPDU, if the latter is better
than the one stored. For example, when a bridge auto-proclaims to be
the Root Bridge, it might receive a BPDU that says that another bridge,
having a better Bridge ID, is the Root Bridge. If that is true, then the auto-
proclaiming bridge shall update the internal con�guration, acknowledging
that another bridge is the Root Bridge.

• Port Role Selection state machine (PRS) - This machine's task is clear from
its name. It has to select the roles of every port from the bridge.

• Port Role Transitions state machine (PRT) - This machine implements each
role's logic. That is, if a port has the Disabled Role, then it means that the
port must block messages. The machine makes sure that the port behaves
according to the role it has. It is comprised of four di�erent state machines,
one for each role : Disabled, Root, Designated, Alternate or Backup.

• Port State Transition state machine (PST) - The FSM handles transitions
from the blocked and learning states to the forwarding states, and vice-
versa. It is also the machine that uses the ioctl calls de�ned in the kernel
modi�cations for enabling and disabling learning and forwarding.

• Topology Change state machine (TCN) - Lastly, this implements the proto-
col's logic when a change has occurred in the network's topology. It helps
rebuild the spanning tree if necessary. A single Port Role Selection state
machine is implemented for the whole bridge, and one instance of each of
the other state machines are implemented per port.

Now that we have a look on the way the protocol is implemented it is time for
the architecture to be updated as well. The RSTP protocol implementation has
the architecture shown in Figure 3.9.

Each port shall have its own set of running state machines that have access only
to that port's variables. The only machine that is shared between ports is the
Port Role Selection machine. The machines run asynchronously per port and on
a bridge level. In a port, the machines are connected only through the variables
they share. The lines between the FSMs are there to show that they share some
variables, and are connected that way. The full diagram remains the �gure from
Appendix A.

BPDUs are sent to the appropriate Port Receive machine using a mechanism
that will be detailed in the implementation chapter. Each FSM group shall work
independently of another and will send BPDUs based only on that port's variables
and received BPDU. The PTX machines only have access to the port they belong.

CHAPTER 3. ARCHITECTURE 30

Figure 3.9: RSTP implementation

The Port Role Selection machine monitors variables in all ports and makes deci-
sions based on them. These decisions will in�uence the outcome of the respective
port's logic. As it can be seen, there is a high degree of asynchronism both on a
port level, and on a bridge level. Inside a port, di�erent FSMs share that port's
con�guration variables, and may try to access them simultaneously. More than
that, the FSMs wait for conditions to be true before jumping to the next state.
Looking at the switch as a whole, each port's FSM group has to synchronize with
the PRS machine.

Figure 3.9 does not show the shared memory area where the protocol's con�gu-
ration resides. Sometimes, the ports have to access this area because they need
information that is bridge-speci�c, such as the bridge's ID and timer values. This
is yet another level on which the ports' FSM groups have to synchronize. Simi-
larly, a user might decide to modify the RSTP's running parameters for a speci�c
port, therefore the port's variables are not only accessed by the FSMs belong-
ing to the port, but also by the CLI module, with the help of the entries we've
mentioned before.

CHAPTER 3. ARCHITECTURE 31

3.2.3 CLI sub-module

The CLI sub-module's main task is to accept user input and change the protocol's
running parameters accordingly. Also it has to o�er the option of disabling the
RSTP protocol on all ports or for each individual port.

Figure 3.10: CLI sub-module

Moreover, the sub-module has access to the shared memory area where the global
bridge-speci�c con�guration resides. Since this part is not the only one that needs
to access that area, synchronization issues appear.

Fortunately, LiSA contains an implementation of a mutually exclusive shared
memory area, so the implementation will only have to worry about locking and
unlocking the associated mutex.

Chapter 4

Implementation

Until now, we have described the architecture of the application. In this chapter,
we present the actual implementation, focusing on the low level, programming-
related components, and departing ourselves from the high-level view previously
employed. Thus, there are three steps that we've followed in implementing the
application, steps that are closely related to the architecture itself:

• Integration of the protocol's implementation with LiSA

• Adding CLI entries for the RSTP protocol

• Implementing the RSTP protocol

Before presenting the three steps, let us focus on the implementation idea of the
whole application. This is presented in Figure 4.1. The application will run as a
daemon1 and will interact with the CLI process and the LMS part of LiSA.

Figure 4.1: Implementation architecture

1In Unix and other computer multitasking operating systems, a daemon is a computer
program that runs in the background, rather than under the direct control of a user

32

CHAPTER 4. IMPLEMENTATION 33

The daemon starts by creating two threads:

• A management thread whose role is to communicate with the CLI process
and receive input from the user

• A receiver thread that implements the multiplexing of incoming BPDUs. It
will forward the received BPDU to the corresponding port. Each port has
a circular bu�er where BPDUs are stored. This thread will put received
BPDUs in the respective bu�er and signal the Port Receive state machine
that a BPDU has arrived.

LiSA maintains a shared memory area where global con�guration options are
stored. The management thread and each port will be able to access it.

BPDUs are received with the help of the kernel modi�cations made in order to
recognize BPDU frames. Frame analysis is done by code in the kernel part of
LiSA.

The daemon also maintains a list of all monitored ports. Since it is not necessary
that all ports have RSTP enabled on them, only the ports that do are included in
the list. Each port has an associated structure where all variables and timers are
stored. When a user enables RSTP on a port by issuing the rstp enable command
in the con�gure terminal menu, memory is allocated for such a structure and the
port is added to the list. Each port will have an associated group of �nite state
machines. The exact details of how these are implemented will be described in
the following chapters.

4.1 RSTP integration with LiSA

It may seem odd to start with this since in an initial point, there is no imple-
mentation to speak of. Actually, an important port of the integration process is
represented by getting the appropriate input from LiSA. LiSA only forwards to
the upper layers those frames that it can identify, meaning that BPDUs would
not reach our implementation if we didn't make the appropriate modi�cations.
Frame identi�cation is done in the kernel code of LiSA's implementation, in the
sw_socket_�lter routine. All frames are �ltered through this routine. If a proto-
col is recognized then the socket bu�er gets enqueued in the appropriate switch
socket and the packet does not get in the forwarding algorithm.

The socket bu�er is the most fundamental data structure in the Linux kernel
networking code. Every packet sent or received is handled using this data struc-
ture. The modi�cations we make to the sw_socket_�lter routine use this bu�er
to access the layer 2 data of the received packet. We've mentioned earlier that
a BPDU is identi�ed by having the DSAP and SSAP �elds equal to 0x42 and
an LLC Control �eld value of 0x03. Thus, the code that enables LiSA to send
BPDU frames to our implementation is this:

CHAPTER 4. IMPLEMENTATION 34

1 if (skb->data[0] == 0x42 && skb->data[1] == 0x042 && skb->data[2] ==
0x03) {

2 dbg("Identified RSTP frame on %s\n", port->dev->name);
3 list_for_each_entry_rcu(sw_sk, &port->sock_rstp, port_chain)

{
4 atomic_inc(&skb->users);
5 handled |= sw_socket_enqueue(skb, port->dev, sw_sk);
6 }
7 goto out;
8 }

After this code has been inserted, the question that remains to be answered is how
exactly does an user space application receive the frame? By creating a struct
list_head �eld called sock_rstp in LiSA's struct net_switch_port, and choosing
a globally unique constant by which we can identify our protocol in LiSA, a user
space application can use the socket interface to receive frames. By setting the
ssw_proto �eld of the struct sockaddr_sw de�ned in LiSA, to the value of the
constant we previously de�ned, sending and receiving frames is just a matter of
reading and writing on a socket.

After doing this modi�cation we now have one of the inputs to our implemen-
tation, the BPDUs. The protocol implementation will have to open up a socket
for each port, and listen to modi�cations on those sockets, so that it properly
receives the BPDUs.

There is another type of input we require, before going into the protocol imple-
mentation : entries in the CLI menu.

4.2 CLI entries

Most protocols have a small number of con�gurable parameters that in�uence the
protocol's behaviour. In our case, the RSTP parameters are stored in a shared
memory area accessible by all userspace LiSA related processes. The next step in
the implementation is to allow the user to modify these variables with the help
of the CLI component of LiSA.

First thing to do is to add an entry in the Cisco-like menu, to allow the user to
enable or disable RSTP support on all ports. This is done by adding an instance
of the menu_node structure to the existing menu tree. The menu_node structure
has the following de�nition:

1 /* Command tree menu node */
2 struct menu_node {
3 /* Complete name of the menu node */
4 const char *name;
5
6 /* Help message */

CHAPTER 4. IMPLEMENTATION 35

7 const char *help;
8
9 /* Bitwise mask for filtering */
10 uint32_t *mask;
11
12 /* Custom tokenize function for the node */
13 int (*tokenize)(struct cli_context *ctx, const char *buf,

struct menu_node **tree, struct tokenize_out *out);
14
15 /* Command handler for runnable nodes; */
16 int (*run)(struct cli_context *ctx, int argc, char **tokv,

struct menu_node **nodev);
17
18 /* Additional data that a custom tokenize function may use

*/
19 void *priv;
20
21 /* Points to the sub menu of the node */
22 struct menu_node **subtree;
23 };

The name and help �elds are what the user sees in the menu and the mask �eld
is used for �ltering entries based on privilege levels. The next two routines are
tokenize which allows for custom tokenizing of user input, followed by run which
is the routine called by the user when he selects the corresponding menu entry.
The priv �eld is used to store private data, and the subtree �eld allows multiple
menu_nodes to be chained in a tree-like structure.

In the end, an RSTP entry in the menu structure, looks like this:

1 (struct menu_node){
2 .name = "rstp",
3 .help = "Global RSTP configuration subcommands",
4 .mask = CLI_MASK(PRIV(15)),
5 .tokenize = NULL,
6 .run = NULL,
7 .subtree = (struct menu_node *[]) {
8 & (struct menu_node){
9 .name = "run",
10 .help = "",
11 .mask = CLI_MASK(PRIV(15)),
12 .tokenize = NULL,
13 .run = cmd_rstp_run,
14 .subtree = NULL
15 },
16
17 NULL
18 }

In this example, we have the rstp run command given by the user when he wants
to enable support for the RSTP protocol. This can be compared to a global
switch that enables and disables the protocol on all ports. This is added in the

CHAPTER 4. IMPLEMENTATION 36

con�g_main tree which o�ers the user diverse options of modifying the running
con�guration of the switch. The user enters this menu branch after typing the
con�gure terminal command in the CLI. The �nal result looks like this:

Also, the user has to be able to turn RSTP on or o� on a per-port basis. This
is done by adding a similar entry in the con�g_if_main tree that the user ac-
cesses when selecting a speci�c interface to con�gure by giving the command int
Ethernet <0-24>.

Before going into the details of how the routines from the run �eld are imple-
mented , we have to go through the methods of communication between the
CLI and external processes. There are two such methods : shared memory and
message queues.

Shared memory is used to allow LiSA related processes to access global switch
information, that is, information that is not directly related to any of the ports.
As an example of such information we could give the switch's priority in the
RSTP protocol that determines which switch will end up being the Root Bridge.

The second method uses software engineering components usually used for in-
terprocess communication: message queues. Message queues provide an asyn-
chronous communications protocol, meaning that the sender and receiver of the
message do not need to interact with the message queue at the same time. Mes-
sages placed onto the queue are stored until the recipient retrieves them. These
are used when the user wants to modify port information or makes queries that
involve receiving an answer back from the RSTP daemon. This answer does not
have to be stored anywhere since the user will only want it to show up on the
screen.

The shared memory structure has the following format:

1 /* Switch shared memory structure */
2 struct shared {
3 /* Enable secrets (crypted) */
4 struct {
5 char secret[SW_SECRET_LEN + 1];
6 } enable[SW_MAX_ENABLE+1];
7 /* Line vty passwords (clear text) */
8 struct {
9 char passwd[SW_PASS_LEN + 1];
10 } vty[SW_MAX_VTY + 1];
11 /* CDP configuration */
12 struct cdp_configuration cdp;
13 /* RSTP configuration */
14 struct rstp_configuration rstp;
15 /* List of interface tags */
16 struct mm_list_head if_tags;
17 };

CHAPTER 4. IMPLEMENTATION 37

RSTP speci�c information is contained in the rstp �eld, of type struct rstp_-
con�guration. This structure contains all bridge variables along with di�erent
�ags that enable the protocol. The RSTP con�guration from the shared memory
structure is accessed using setter/getter methods that we de�ne. Each protocol
con�guration, such as CDP and RSTP previously mentioned, is manipulated
using such methods.

Concerning the message queue, there had to be a globally de�ned name so that
all interested processes could access it. The task of de�ning such a name and
creating the message queue was delegated to the management thread contained
in the RSTP daemon. The queues used for communication between the CLI and
the RSTP daemon are named /lisa-rstp-%d, where %d is used to di�erentiate
between di�erent queues. The management thread opens a queue named /lisa-
rstp-0, and this queue will be enabled for the duration of the daemon's life. After
creating the message queue, this thread loops forever, waiting for messages to be
received on the queue. These messages follow a pre-de�ned pattern, implemented
as a structure of the following format:

1 struct rstp_request {
2 int type;
3 pid_t pid;
4 int if_index;
5 char device_id[64];
6 };

The type �eld tells the management thread what the message represents, whether
it is an enable/disable message, or a message that requests all interfaces that have
RSTP enabled on them, etc. The pid �eld shows the process id of the process that
sent the message. This is useful since some messages require giving an answer
back to the process that sent them. Such processes create a queue with names that
follow the previously mentioned pattern, /lisa-rstp-%d, replacing %d with their
process ids. Having the process id in the message allows the management thread
to open the queue on which the CLI process listens for answers. Even requests
that do not involve receiving an answer, such as enabling the RSTP protocol on
a speci�c port, use this communication method as a way of acknowledging that
the request has completed successfully. The if_index �eld is used to determine
what interface the request refers to.

In conclusion, the steps taken by the CLI to communicate with the RSTP daemon
are the following:

• open the queue that the daemon uses to accept requests

• for each CLI instance create a queue for the instance to receive answers on

• if the request modi�es a global parameter then only access the shared mem-
ory

CHAPTER 4. IMPLEMENTATION 38

• if the request modi�es a variable that is not stored in shared memory then
send a message to the RSTP daemon

4.3 RSTP implementation

The core of the application is represented by the protocol's implementation. Until
now, we have handled the input for our protocol, namely the BPDUs and the user
commands. Looking at the problem from a layered perspective, we now have
interfaces with the upper and lower layers.

The general problem of the implementation is the way each �nite state machine
will be executed and implemented. The standard speci�es that each FSM will run
independently from the others, but they do cooperate in the sense that data is
shared between them. Ultimately, this data will be the one deciding the behaviour
of the protocol. Naturally, we'll want to store this somewhere, so the struct rstp_-
interface has been de�ned. This structure will contain all the required information
for a single port. Figure 4.2 shows the structure of a port, including the data it
stores.

Each port has its own bu�er where received BPDUs are stored. When the Port
Receive state machine is ready to accept a new BPDU it checks this bu�er for
available data. It is the role of the receiver thread we previously mentioned to
put BPDUs into the bu�er as they arrive on the socket.

Figure 4.2: Port structure from an implementation point of view

The FSMs have been described earlier, the important thing to note here is that
the port con�guration is accessible from each state machine. No matter the model
of implementation chosen for them, they will have access to this data. This is
not shown explicitly in the �gure because of space reasons.

CHAPTER 4. IMPLEMENTATION 39

The port's con�guration contains the following:

• A socket representing the connection to the actual physical port. This
socket will be used both to receive and send data.

• Timers controlling di�erent aspects of the protocol's logic. There are a num-
ber of eight timers that each port must implement. Of these, we mention
fdWhile and helloWhen. The fdwhile timer delays a port transition into an
other state in order for other bridges to receive spanning tree information.
It is this timer that makes STP so slow compared to RSTP, since STP relies
on it to move a port into the forwarding state. RSTP �xes this through
the proposal/agreement mechanism we explained eariler. The helloWhen
timer ensures that at least one BPDU is transmitted by a Designated port
in each HelloTime period.

• Variables required by the RSTP implementation. The 802.1d standard
de�nes 45 variables that should be assigned to each port. Most of them are
used internally by the implementation, to synchronize the di�erent state
machines. Since the goal of the protocol is to change the roles and states of
the ports, we mention the selectedRole and reselect variables as being among
the most important ones. The selectedRole variable is self-explanatory,
while the reselect variable is set to true when an event has happened such
that a port might have to change its state. If one or more of the ports
have the reselect variable set, then the Port Role Selection state machine
activates and checks that each port is in the correct state.

With the general implementation in place, having all data structures and bu�ers
ready, the state machines are now ready for implementation.

4.3.1 Finite state machine implementation

The initial approach concerning the FSMs was that each one should be repre-
sented by a thread. Since the 802.1d standard speci�cally mentions that each
thread should run independent from the other, the �rst idea that comes in mind
is a thread. Each FSM can be viewed as a collection of variables and procedures
that execute simultaneously with other FSMs' procedures. Having a separate
process for each thread would be inappropriate since the threads share a lot in-
formation, so the process idea is completely out of the question. The library used
for providing the thread functionality is pthreads1.

Having chosen the thread solution, each port would now have 10 associated
threads that start running whenever a port receives the rstp enable command
through the management thread. All these threads share the port's con�gura-

1POSIX threads, or Pthreads, is the POSIX standard that de�nes an API for creating and
manipulating threads

CHAPTER 4. IMPLEMENTATION 40

tion. More speci�cally, each thread has a pointer to the location in memory where
the struct rstp_interface associated with that port resides.

Because multiple threads now point to, and access, the same area, synchronization
issues appear. Two or more threads might modify the same variable at the same
time, leaving it in an inconsistent state. For that, variables that are shared
between threads, are protected using mutexes. The matter is complicated though,
by the fact that FSMs test a certain number of variables before jumping into the
next state. If the variables have the correct values, then the FSM goes into the
next state, else it blocks waiting for the respective variables to have the necessary
values. This is the issue that complicated the implementation, and made it go
through several iterations and revisions before reaching its current state.

In order for a FSM to jump to the next state, the transition has certain conditions
to be ful�lled. The simplest solution is for the thread to do a busy-waiting loop
until the conditions were satis�ed. That meant that the thread repeatedly checked
each variable to see if it had the right value. This is the worst possible solution
since the processor is kept busy at all times and the system's load average could
go as far as 0.9 because of it.

Dropping the busy-waiting solution, the next idea was to use semaphores. When
a thread1 had to jump to another state it simply used the down operation on
the semaphores associated with the variables from the condition. Each variable
had an associated semaphore, so if a thread waited for variable A to equal 1
and variable B to equal 1 then it would simply call sem_post on sem_A, and
after that do the same thing for sem_B. Unfortunately, the solution works for
states that only have one transition to another state. If a FSM could go from a
state to one of multiple states, then it had to wait on multiple sets of conditions,
corresponding to each transition to those states. The semaphore solution was no
longer viable, because while waiting on a semaphore, another set of conditions
might have become true. There was no way for the thread to know that, since
it was blocked waiting on the semaphore. Using non-blocking down operations
on the semaphores amounted the same busy-waiting solution that we previously
skipped.

Giving up on the semaphores leads to the next solution : condition variables.
These are synchronization primitives that allow threads to wait until a particular
condition occurs. They support two operations : signal and wait. Every variable
from the struct rstp_interface is associated a condition variable so threads can be
noti�ed when the variable is changed. The downside of using condition variables
can be seen in Figure 4.3.

Thread 1 modi�es the x variable and then uses the signal operation on the x_-
changed condition variable to notify Thread 2 that variable 1 has changed. The
problem with this is that Thread 2 might be doing something else when Thread

1Since each FSM is represented by a thread, the term thread can be replaced with FSM

CHAPTER 4. IMPLEMENTATION 41

Figure 4.3: Lost signal using condition variables

1 sends the signal. That is, Thread 2 is not waiting at the condition variable
when Thread 1 sends the signal. In that case, the signal is lost, since no thread is
waiting at the condition variable. No matter what we do, there is still a possibility
that Thread 2 is preempted right before waiting on the condition variable, and
during that time, Thread 1 might send the signal. We have no way of knowing
that a thread is waiting on a condition variable when another one is signaling it.

The conclusion up to this point is that semaphores could be a solution if we could
monitor several of them without busy-waiting, and condition variables could be
used if they somehow stored the signal even if there is no thread on the receiving
end. What we need is a combination of both, something that saves the signal
and supports monitoring multiple instances of its type. The answer to this has
been introduced recently in the Linux kernel, in version 2.6.22 and support was
provided in glibc since version 2.8 : event noti�cations using �le descriptors, or
short, eventfd.

Eventfd provides an event noti�cation system through �le descriptors, which is
exactly what we wanted. The signal and wait calls have now been replaced with
the usual write, and read calls. Multiple event monitoring is done with the help of
the select routine. Let's give an example of how a thread, being in state A, might
wait for conditions that could lead it to go in state B or C or D (Figure 4.4).

First, the thread has to make an initial check on the conditions to see if they are
true or not:

1 if (!x) {
2 goto stateB;
3 } else {
4 if (y) goto stateA;
5 if (z) goto stateC;
6 }

Suppose none of the above is true when the thread checks the conditions so now

CHAPTER 4. IMPLEMENTATION 42

Figure 4.4: Example states and transitions

the thread has to wait for one of the three sets to become true. For that, it has to
monitor variables x, y and z. To do that, it �rst creates a set with the associated
condition variables, and then it goes in the select call.

1 FD_ZERO(&condition_set);
2 FD_SET(cond_x, &condition_set);
3 FD_SET(cond_y, &condition_set);
4 FD_SET(cond_z, &condition_set);
5
6 repeat_label:
7 select(MAX(cond_x, cond_y, cond_z) + 1, &condition_set, 0, 0, 0);

The thread is now monitoring all of the above three condition variables : cond_x,
cond_y and cond_z, each corresponding to one of the three variables. What this
implies is that whenever another thread assigns a value to x or y or z, it also
has to signal the associated condition variable. When one of the three condition
variables is signalled then the select unblocks and the waiting thread has to
recheck all three condition sets again and clear the received signal by reading
from the �le descriptor:

1 if (FD_ISSET(cond_x, &cond_set))
2 read(cond_x, &u, sizeof(u));
3 if (FD_ISSET(cond_y, &cond_set))
4 read(cond_y, &u, sizeof(u));
5 if (FD_ISSET(cond_z, &cond_set))
6 read(cond_z, &u, sizeof(u));
7 if (!x) {
8 goto stateB;
9 } else {
10 if (y) goto stateA;
11 if (z) goto stateC;
12 } else {
13 goto repeat_label;
14 }

CHAPTER 4. IMPLEMENTATION 43

The thread checks the conditions again, and if no set is true, it goes back to the
select call.

As it can be seen, the implemented code was for a simple case with only three
variables and four states, but the RSTP �nite state machines can have as many
as 10 states and transitions with 8 tested variables. It became a tedious task to
implement all states and transitions in this manner. A partial implementation of
4 of the FSMs allowed for some quick testing using the sub-modules previously
de�ned. The Port Receive state machine got the BPDU and it signalled a few of
the other FSMs to start working, using the synchronization mechanism described
above. The proposal/agreement mechanism described earlier requires bridges to
exchange BPDUs at a fast rate so that the process ends in at most 2 seconds,
and propagates across the whole network. It is only normal the implementation
must be fast enough to allow the exchange of packets at such a fast rate. Because
of the many condition variables, the 10 threads per port, and all the other syn-
chronization variables, the resulting implementation was too slow to allow rapid
exchange of packets. A new approach was necessary.

The original idea of using threads appeared only because the standard mentioned
the asynchronism characteristic of the �nite state machines. On the other hand,
it didn't mention that the FSMs should be scheduled in a random order, or any
other order. That means we can apply our own order to the execution of the
FSMs, one that is indeed in a pre-de�ned order, but it gives the illusion that
they run in parallel. Instead of letting the operating system do the scheduling by
using threads, we execute each FSM sequentially.

For this idea to be possible, we now have to monitor the exact state the �nite
state machine is in, since we have to know what routine to execute. The port
keeps a bi-dimensional array of size number_of_FSMs x 2. Each FSM shall store
in this array, the state it is currently in and if it had executed that state or not.
Each state shall be executed only once, after which the FSM shall wait for a
condition to become true, so it can jump in another state. It is the responsibility
of each state to update the array.

Additionally, each FSM is assigned a one-dimensional array of routines, each
routine representing one state. For example, the Port Receive state machine has
two states, labeled discard and received. The array and the de�nitions look like
this:

1 #define PRX_DISCARD 0
2 #define PRX_RECEIVE 1
3
4 void (*prx_state_table[2])(struct rstp_interface*) = {prx_discard,

prx_receive};

First, the FSM checks to see if the current state has been executed or not by
looking at the bi-dimensional array. If the state has not executed then it, does
its computing. After that, the FSM checks all conditions to see if it can jump in

CHAPTER 4. IMPLEMENTATION 44

the next state. If it can't it keeps the current state and marks it as executed. If
it can jump, then it changes the current state to the target state and marks it as
not executed. The code looks like this:

1 if (!port->state[FSM_INDEX][EXECUTED]) {
2 // call routines
3 // update variables
4 }
5
6 if (cond1 && cond2) {
7 port->state[FSM_INDEX][STATE_FUNCTION] =

TARGET_STATE_FUNCTION;
8 port->state[FSM_INDEX][EXECUTED] = NOT_EXECUTED;
9 } else {
10 port->state[FSM_INDEX][STATE_FUNCTION] = CURRENT_FUNCTION;
11 }

Finally, we have to make sure that all FSMs get to execute their states, so we
have to iterate through all of them. This is done with a simple for construct that
executes each FSM's current state, for each port:

1 for (;;) {
2 list_for_each_entry_safe(entry, tmp, ®istered_interfaces, lh) {
3 prx_state_table[entry->state[PRX][FUNC]](entry);
4 ppm_state_table[entry->state[PPM][FUNC]](entry);
5 bdm_state_table[entry->state[BDM][FUNC]](entry);
6 ptx_state_table[entry->state[PTX][FUNC]](entry);
7 pim_state_table[entry->state[PIM][FUNC]](entry);
8 prt_state_table[entry->state[PRT][FUNC]](entry);
9 pst_state_table[entry->state[PST][FUNC]](entry);
10 tcm_state_table[entry->state[TCM][FUNC]](entry);
11 }
12
13 prs_state_table[prs_func]();
14 }

The Port Role Selection is executed only once since only one instance of it exists,
as speci�ed by the standard.

By doing the above for loop, we essentially got rid of all threads and more than
that, there are no more synchronization issues. It is basically an user space
deterministic scheduling scheme, where each FSM gets to execute each state in a
pre-de�ned order. On the other hand, we are back at square one, since there is a
chance that none of the FSMs pass in their next state. That is, each machine is
checking their transitions, but none of them are valid, so they all remain in their
current state. This leads to busy-waiting, because no actual work is being done,
and processor cycles are wasted.

This problem is solved by checking the port's con�guration to see exactly which
variables trigger the transition from one state to another, and are not modi�ed
by any of the machines. These correspond to the timers and the user modi�ed

CHAPTER 4. IMPLEMENTATION 45

con�guration variables. These are the external inputs that can trigger a state
change, when every state machine is continuously checking their transition con-
ditions. For that, the above code is modi�ed so the for loop ends when no state
machine has transitioned in another state. After that, the thread running the
above code blocks on an event descriptor, waiting for timers to expire or BPDUs
to arrive, or for a user to modify some parameters. Once the event has been
triggered, it goes back to executing the for loop.

There is one state machine that is not executing in the above code : the Port
Timers state machine. Its job was to decrement the timers each second. Since
we have no way of making the above loop execute each second, nor do we want
it to do that, another method of implementation had to be found. An alarm
mechanism was set up, that transmitted signals once every each second. These
signals were caught by a routine that upon execution, decremented each timer.

What this means is that now, multiple threads can access the timer, so concurrent
access is possible. It does not matter in what order the threads access the timers,
and modi�y them, since they will be continuously checked by the for(;;) loop.
What does matter is that the modi�cations are visible from all threads. This is a
problem because most of the times the compiler will assume that variable values
will not change asynchronously so it will make optimizations based on this. To
override this behaviour the C type quali�er volatile is used in the de�nition
of the timers, so the compiler does not make any suppositions concerning their
values. It tells the compiler that the timers are subject to sudden changes for
reasons which cannot be predicted from a study of the program itself, and forces
every reference to them to be a genuine reference[13].

Chapter 5

Testing and results

Figure 5.1 shows the network that the protocol implementation has been tested
on. It's main components are 3 Cisco switches, one SOHO router and a server
running LiSA. The grayed out switches are used for accessing the server and the
other switches through a web interface.

The SOHO router ensures that the network is completely isolated from the Inter-
net. To provide access to the network, ports 22, 80 and 443 are forwarded. Port
22 is used by the SSH protocol to allow remote connections to the network, while
ports 80 and 443 are used by the HTTP and HTTPS protocols to provide a web
interface.

Having a real network to test the protocol on, proved to be a great advan-
tage, because the implementation could be tested against an already functioning
one.Thus, even if one �ag was set incorrectly in a BPDU sent by the server
running LiSA, this would have lead the other switches to signal this incorrect be-
haviour by sending BPDUs that didn't match the normal protocol conduct. For
example, in the early stages of testing, the implementation erroneously set the
agree �ag in each sent BPDU. In the proposal/agreement mechanism, this means
that the other switch had previously sent a BPDU with the proposal �ag sent.
Because that didn't happen, the mechanism failed, and the switch kept sending
BPDUs that didn't acknowledge the ending of the proposal/agreement process.
Considering that there were other errors in the implementation, in an environ-
ment where all machines were servers running LiSA, such an error might not
have been caught. All servers would correctly choose the right roles and states
for the ports, but they would have done so using an incorrectly implemented
process. Once another switch that didn't run LiSA would have been connected
to the network, the protocol would have failed because it did not have a correct
implementation. That is why, it is preferable that the implementation of a layer 2
protocol that already is provided by other network components, is tested against
these, so interoperability is ensured.

46

CHAPTER 5. TESTING AND RESULTS 47

Figure 5.1: Network used for testing RSTP

The tests aimed to con�rm the following:

• A server running LiSA can be inserted in a network where the Root Bridge
had better priority than the server

• A server running LiSA can be inserted in a network where the Root Bridge
had worse priority than the server

• Backwards compatibility with STP works

• Loops are eliminated according to the protocol

For the �rst test, the eth1 - fa0/9 connection was activated as Bridge SW1 was
already running the RSTP protocol. The SW1 Bridge had a priority value of
32768, while the server had a greater one of 32769. In this con�guration, the
SW1 Bridge is the Root Bridge and it remains so after the link is activated.
The implementation on the server had to assign the eth1 port the Root Port role.
After the proposal/agreement mechanism, the implementation managed to create
a stable con�guration, with SW1 as Root Bridge.

The second test is similar to the previous one, only this time the server running
LiSA has a better priority so it should become the Root Bridge when the eth1
- fa0/9 link is activated. This means that after the server announces that it
is the Root Bridge (all switches do that when they are �rst connected), SW1

CHAPTER 5. TESTING AND RESULTS 48

will actually con�rm that after comparing their priorities. The implementation
handled this case too, making the eth1 port a Designated Port, and getting the
SW1 bridge to assign the fa0/9 port the Root Port role.

Making sure that backwards compatibility with the Spanning Tree Protocol works
is very important since not all bridges o�er support for RSTP. In networks where
the topology does not change very often, STPs high convergence time is not an
important issue. Bridges SW2 and SW3 from the above network, can be enabled
to run STP. Thus, to test compatibility, the previous two tests were repeated
with SW2 to see if the communication between the server and the switches was
functional even when using TCN BPDUs and Con�guration BPDUs. The imple-
mentation yielded good results, managing to create a stable con�guration in a few
seconds after the link was enabled. These extra seconds have appeared due to the
timer-based root election process that the Spanning Tree Protocol de�nes, and in
a larger network would have a signi�cant impact on the protocol's re-convergence
time.

Finally, the test that actually veri�es the core functionality of the protocol checks
if loops are properly handled. Given the above network, there are several ways
to combine the four switches (the 3 Cisco switches and the server with LiSA) to
create a loop. For simplicity, let's take the scenario where bridges SW1 and SW3
plus the server are connected to each other in a physical ring topology. That
means, that links eth1 - fa0/9 , eth4 - fa0/8 and fa0/1 - fa0/3 are all activated.
There are two sub-scenarios to test here, each corresponding to whether the server
is Root Bridge or not. In case it is a Root Bridge then all ports are Designated
Ports and it is the job of the other two switches to block one of the ports. The
other scenario, where the server is not a Root Bridge is more relevant since it
tests if our implementation is able to block the ports. Each of these tests passes,
the implementation managing to block one of the ports so there is no loop.

Chapter 6

Conclusions

The end result of the project was an RSTP implementation integrated in the
LiSA project. The implementation provides backwards compatibility with the
Spanning Tree Protocol and manages to create a loop-free topology in the network
described earlier. Since it is now a part of the LiSA project, the code is open-
source, so further re�nements and �xes can be made by anyone. This provides an
advantage since the implementation will be tested against di�erent con�gurations
and this will trigger any bugs and errors that our network wasn't able to catch.

LiSA provides an excellent framework for developing and implementing layer 2
protocols. By abstracting all the kernel implementation details from the user, and
making frame handling as easy as reading and writing from a socket, it manages
to simplify protocol implementation and allows the user to focus on the protocol's
details instead of lower-level1 issues. More than that, it provides a CLI similar to
that o�ered by Cisco's switches, which makes it easier for network administrators
to get accustomed to. The fact that LiSA is based on the Linux kernel and
takes advantage of its networking stack, means that it can run on any platform
supported by Linux without having to modify the source code. This is a great
advantage since once a protocol is supported, its implementation can easily be
ported on di�erent architectures without changes in the code.

The biggest challenge of the project was to get the �nite state machines to work.
The solution to this problem was found after going through most of the synchro-
nization primitives that the GNU/Linux operating system has to o�er. Taking
each of these, analyzing their strengths and weaknesses, lead to an implemen-
tation using event �le descriptors that was slow because of the high number of
threads. Because debugging multi-threaded programs is di�cult and the source
code can be hard to maintain, and because race conditions are hard to track,
this implementation was scrapped in favour a single threaded solution that pro-
vides the functionality of multiple threads working together. All synchronization
problems have disappeared because only one thread accesses the data at a single

1By lower-level we mean the lower level of the Linux kernel networking stack implementation

49

CHAPTER 6. CONCLUSIONS 50

time, so testing the transitions' conditions is a simple matter of checking a few
variables for equality.

The underlying problem of the implementation is the simulation of asynchronous
�nite state machines. These are usually implemented in hardware because the
change of one line1 can trigger the immediate jump in another state using fast
combinational circuits. A hardware-based implementation of the RSTP protocol
would be faster than anything software can produce since it relies heavily on state
machines to de�ne its logic.

Another idea to keep in mind is that RSTP really shows its strength in large
networks, where STP can reach a re-convergence time between 15 and 30 seconds.
The network used for testing the protocol, only had 4 switches, so the advantage
of RSTP over STP might not be that obvious.

The current implementation of RSTP is still in its early stages. There are nu-
merous scenarios and corner-case situations that arise in practice that are hard
to test. Making sure that the protocol functions no matter what happens in the
network is of top priority. This includes providing support for edge ports and
allowing user-controlled port transitions.

A major improvement would be the implementation of MSTP. Originally de�ned
in 802.1s and later merged into 802.1q-2003, MSTP is an extension to RSTP that
allows separate spanning trees to be computed for each de�ned VLAN. It shares
a lot of RSTPs functionality and since LiSA already o�ers VLAN support, this
improvement would boost LiSA's functionality.

1For example, from HIGH to LOW

Bibliography

[1] Radia Perlman. An Algorithm for Distributed Computation of a Spanning
Tree in an Extended LAN, 1985.

[2] http://en.wikipedia.org/wiki/Packet_switching. Packet Switching.

[3] http://www.livinginternet.com/i/iw_packet_inv.htm. Packet Switching
History.

[4] http://en.wikipedia.org/wiki/Circuit_switching. Circuit Switching.

[5] http://en.wikipedia.org/wiki/LAN_switching. Lan Switching.

[6] http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_pa-
per09186a0080094cfa.shtml. Understanding Rapid Spanning Tree Protocol
(802.1w).

[7] http://en.wikipedia.org/wiki/Spanning_tree_protocol. Spanning Tree Pro-
tocol.

[8] Rich Seifert and Jim Edwards. The All-New Switch Book. Wiley Publishing
Inc., second edition, 2008.

[9] Wald Wojdak. Rapid spanning tree protocol: A new solution from an old
technology, 2008.

[10] Nicu Ioan Petru. LiSA - Sistem de comutare a pachetelor, 2005.

[11] Radu Rendec, Ioan Nicu, and Octavian Purdila. Linux Multilayer Switching
with LiSA, 2006.

[12] Radu Rendec. Sistem de rutare intre VLAN-uri bazat pe LiSA, 2005.

[13] Mike Banahan, Declan Brady, and Mark Doran. The C Book, 1991.

51

	Algorhyme
	1 Introduction
	2 Spanning Tree Algorithms
	2.1 Spanning Tree Protocol
	2.1.1 Terminology
	2.1.2 BPDU Formats
	2.1.3 Mode of operation
	2.1.4 Disadvantages

	2.2 Rapid Spanning Tree Protocol
	2.2.1 Terminology
	2.2.2 BPDU format
	2.2.3 Mode of operation
	2.2.4 Improvements over STP

	3 Architecture
	3.1 LiSA
	3.1.1 Linux Multilayer Switch
	3.1.2 Command Line Interface
	3.1.3 Linux distribution

	3.2 RSTP module architecture
	3.2.1 Kernel sub-module
	3.2.2 Userspace RSTP implementation
	3.2.3 CLI sub-module

	4 Implementation
	4.1 RSTP integration with LiSA
	4.2 CLI entries
	4.3 RSTP implementation
	4.3.1 Finite state machine implementation

	5 Testing and results
	6 Conclusions

